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A method is suggested for the derivation of finite-size corrections in the ther- 
modynamic functions of systems with pair interaction potential decaying at 
large distances r as r a-~, where d is the space dimensionality and a > 0. It 
allows for a unified treatment of short-range (a = 2) and long-range (a < 2) 
interaction. The asymptotic analysis is illustrated by the mean spherical model 
of general geometry Ld-~'x oo d' subject to periodic boundary conditions. The 
Fisher-Privman equation of state is generalized to arbitrary real values of d~> a, 
0 <~ d' < a. It is shown that the e-expansion may be used to study the breakdown 
of standard finite-size scaling at the borderline dimensionalities. 
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1. I N T R O D U C T I O N  

Fini te -s ize  scal ing for sys tems wi th  l o n g - r a n g e  in t e r ac t ions  decay ing  at  
large d i s tances  r as r - d - ~  where  d is the space d i m e n s i o n a l i t y  a n d  

0 < a ~< 2 is a pa ramete r ,  was first s tud ied  by F i she r  a n d ' P r i v m a n 3  I) Since 
the t r a d i t i o n a l  a p p r o a c h  (2 6) c a n n o t  be used in  this case, F i she r  a n d  

P r i v m a n  (1) suggested a n  a l t e rna t ive  a p p r o a c h  based  on  direct  e v a l u a t i o n  of  
the closeness  of ce r ta in  d-fold sums  to the c o r r e s p o n d i n g  d - d i m e n s i o n a l  
integrals .  

A crucia l  po i n t  of  the a p p r o a c h  (2 6) is the r e d u c t i o n  of the  
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d-dimensional problem to an effectively one-dimensional problem. In the 
case of short-range interactions this is achieved with the aid of the identity 

(A + q2)-1 = dt e x p ( -  At) e x p ( -  q2t) (A >7 0) (1.1) 

In this case of long-range interactions it is necessary to find an analogue of 
(1.1) for the propagator [A+(q2)"/2] -~ which appears in the evaluated 
finite sum instead of the left-hand side of (1.1). The way to the required 
generalization becomes clear if we regard the identity (1.1) as a Laplace 
transformation of the function exp( -At ) .  Then we may write, instead of 
(1.1), 

[A + (q2)./2] - t  = dt ~/2(A, t) e x p ( -  qZt) (1.2) 

With some ingenuity, a number of results can be obtained (v) even if the 
explicit form of ~/2(A, t) remains unknown, by just using the fact that it 
is a Laplace original of the left-hand side of (1.2). A further step in this 
approach (8) is the realization of the fact that Y~/2(A, t) is expressible in 
terms of Mittag-Leffler-type functions, the analytical properties of which 
have been studied in detail. ~ By making use of these properties, we may 
easily study in the most general form finite-size effects in models with long- 
range interactions. 

Traditionally, various ideas and methods in the theory of finite-size 
scaling are tested by the example of the mean spherical model, (1~ or the 
lattice (9(n) model in the n ~ oe limit, which is the simplest model exactly 
solvable at any space dimensionality d. In refs. 7 and 8 we investigated 
finite-size scaling in the critical region of the d-dimensional mean spherical 
model in fully finite (block) geometry, with arbitrary interaction potential 
the Fourier transform of which has a leading-order long-wavelength expo- 
nent a, 0 < a ~< 2. In ref. 7 we reported a new derivation of the critical 
finite-size scaling equation for the spherical field in the Fisher-Privman 
form, (1) which provides a very natural basis for deriving useful asymptotic 
expressions. However, our consideration there was confined to the case 
a < d < 2a. In ref. 8, a new analytical technique based on integral transfor- 
mations with Mittag-Leffler-type kernels was used to derive the finite-size 
scaling function for the free energy of the mean spherical model subject to 
the same restrictions: fully finite geometry and ~ < d <  2or. 

In the present paper the approach suggested in refs. 7 and 8 is 
developed for the study of the most general case: (a) geometry L d a' x oo d' 
with periodic boundary conditions imposed along the d* = d - d '  finite-size 
directions, d and d' being arbitrary real parameters, 0 < d ' <  d; (b) the  
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relative magnitudes of d and cr are such that the studied domain includes 
the upper critical dimension d = 2or as well as the mean-field regime d > 2a. 
This general case is interesting not only from the conceptual point of view, 
but for practical reasons as well, since logarithmic and mean-field effects 
violating the standard finite-size scaling (u'~23 become observable at the 
physical dimensionalities d = 1, 2, 3, provided a sufficiently small value of 
is realized. Moreover, the investigation for general real values of d and :r 
sheds light on the use of the e-expansion in the finite-size scaling theory. 
For a discussion of the latter problem see refs. 2, 3, 5, and 6. 

Let us introduce some concepts and notations. The Hamiltonian of the 
model is defined on a finite d-dimensional lattice 5QN = L~ x L2 x ... Ld of 
N= d ]-i j= ~ L: sites, subject to periodic boundary conditions so that interac- 
tions with repeated images of the system are taken into account. (t'~3) As is 
well known, the exact partition function of the mean spherical model is 
given by the expression (see, e.g., ref. 13) 

Z:~(fS[a, H)=Tr'~:/" exP L ~ . j  H 

Here 
t 

- -  1 / 2  

+ 1 ) -  J(q)] (1.3) 

q = {2~p1/LI ..... 2rCpd/Ld}, Pk = O, + 1 .... (rood L~), k = 1 ..... d 

and ](q) is the Fourier transform of the pair interaction potential, which 
in the case of long-range interactions decaying at large distances r as 
r -a-~,  with a > O, has the long-wavelength asymptotic form 

7(q) ~_ 7(0)(I -p~ lql ~ (1.4) 

The usual nearest-neighbor interaction corresponds to a = 2. In Eq. (1.3), 
/3 > 0 is the inverse temperature, H e  [~1 is an external magnetic field, and 
the spherical field ~ obeys the equation 

_ ( L )   po:(o)(1 [H/po:(O) l 2} = (1 .5)  

where ~ = ~/'p~ and in the long-wavelength approximation 

(L) E (~+ iqla)-i (1.6) - I  

q 

From previous investigations (1,13) it is known that the critical proper- 
tics of the model in the thermodynamic limit are determined by the 
asymptotic behavior of the Watson type integral in the long-wavelength 
approximation, 

7r 

w. (==)-. f .. . f . . q  + i . to)  - ,  (17) 

when ~ ~ 0 +. 
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In the theory of critical finite-size scaling it is essential to evaluate the 
asymptotic behavior of the function (1.6) for large Lj and finite values of 
the parameter 

(,01 y=~l/aL/27~, L= LjI lid (1.8) 

Henceforth the function (1.6) will be referred to as the finite-size Watson 
function. 

2. LARGE-L A S Y M P T O T I C  F O R M  OF THE 
FINITE-SIZE W A T S O N  F U N C T I O N  

The asymptotic form of the finite-size Watson function (1.6) when 
Lj ~ oo in the block geometry, y finite, has been analyzed in refs. 7 and 8 
in the case of o < d < 2o, 0 < a <~ 2, Lj = L, j = 1 ..... d. Here we present an 
approach which allows one to treat in a unified way the general case when 
the system is infinite in d' dimensions and finite in d* = d - d '  dimensions, 
including the borderline cases d =  aL I being a positive integer. Four steps 
are taken in this approach. 

A. Using the identity 

f? 1 _ e -  z2:,,~/2- 1~- t _x~/2) (2.1) (1 + z ~ - dx ~ *~(r/2,c~/2~, 

where E~,~(z) is the Mittag-Leffler function (some useful properties of these 
functions are summarized in Appendix A of ref. 8) 

E~'B(z) = F(c&+f l )  (c~> 0) (2.2) 
k = 0  

we obtain for the finite-size Watson function 

Wd,,(~) = ~ - 1 ( L )  f^ dx QLj(x~ -2/a) x~ cr/2~,[ - - .~a /2 ] ]  (2.3) 
1 

where 

Q L ( a ) = L  -1 ~ exp - a  - -  (2.4) 
n =  ( L - -  1) /2  

In the case of L a-a'  x 00 6' geometry of the system, Eq. (2.3) takes the form 

(L) dx [QL(x~  =/~)]a-a' W d, a',o(~) (4~)a'/2 

1,~ , ~/2~ (2.5) x [~(~xl /2~-~/~)U'  x(" d,)/2- *:./2../2t-x 
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where qs(.) is the error function and we have taken into account that L~ = 
. . . .  Ld. = L, while the limit L/--* c~ for j = d* + 1,..., d was taken, with 

the result 

Tc 

lim Qc~(a)= 2-s f ~ dx e-,~x2= (47za)-~/2 qS(nal/2) 
L j ~ o o  

In expression (2.5) the functional dependence on the dimensions d and d'  
is explicitly shown. It allows one to treat d and d'  as real numbers (not just 
integers). 

Step A reduces the problem of evaluating the asymptotic behavior of 
the (d*=d-d')-dimensional sum (1.6) to the corresponding one-dimen- 
sional problem for the sum (2.4). 

B. We continue the function exp[-a(2rcn/L) 2] from the interval 
n e I-L~2, L/2] to the rest of the real line N1 periodically with respect to 
the wavenumber q = 2~zn/L, with period 2~r. This trick allows us to use the 
Poisson summation formula for periodic functions (2/ 

L-1 2 a = ~ a(q) e iq'L (2.6) 
n =  ( L - - l ) / 2  l ~  - - ~  --~r  

where G(q) = G(q + 2~) for each q. With the aid of Eq. (2.6) we obtain 

QL(a)~,(4~za) l/2[q~(gal/2)q- ~' exp(-12L2/4a)] (2.7) 
1= - -o0  

where the primed summation denotes that the term with l =  0 has been 
omitted. The large-L asymptotic equality (2.7) is justified by the fact that 
in the exact expression the error function corresponding to the terms with 
I r  has the argument (7'8) 

z = ~a 1/2 + �89 

and therefore tends to unity exponentially fast when L ~ oQ. 
Next, upon raising both sides of (2.7) to the power d*, one makes the 

second approximation 

[Qr(a)]a*~ (47ca) d*/2 {[cr'b(7~al/2)] d*-}- 2' exp(-12L2/4a)} (2.8) 
I E ~d* 

which follows if in all terms of the form 

[ ~(r~a;/2) ] " exp( - 12L 2/4a) (2.9) 
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with 1 ~< rn ~< d* - 1 and l = Lll r 0 one replaces the error function ~(Tra ~/2) 
by unity. This approximation is legitimate since the exponential function in 
(2.9) cuts off the contribution from small values of a. 

We emphasize that the two approximations made in Eqs. (2.7) and 
(2.8) are the only approximations connected with the finite but large 
enough size of the system. 

By substituting (2.8) in expression (2.5) we obtain 

(L) 
Wa, d, ~(~) = Wd, o.(~)+ 6 We, a,,~(~) (2,10) 

where the bulk contribution [see Eq. (1.7)] has been separated from the 
finite-size one. For the latter we obtain 

6W(L~, t,Ti~=Z.____ dxexp 
a,d,~,~-, (4z) ~/2 t~z,~' 

X X (o. eli~2 - IE,~/2, o-/2 ( -- x o./2 ) (2.11 ) 

It is convenient to introduce the function 

- -  ~ '  "~ dx exp Fa, a ,~(y  ) = - (2~y)-~ + J0 

xx(o. a//2-1~ ~ ~/2~ (2.12) 
*-' a /2 ,  o'/'2 ~ - -  "~ J 

with the aid of which Eq. (2.11) may be written in the form 

6W~L,J,~(~) = (~Ld) -1 + L-~+~Fd,  a,o(~i/~ (2,13) 

We note that for d =  3, d ' =  0, and a = 2 the function (2.12) simplifies 
to 

1 ~ ,  l ' exp( -2 rcy l ) -  (27zy) -2 (2.14) F3"~ = ~ t~z3 

The next two steps are connected with identical transformations of the 
lattice sum in the right-hand side of Eq. (2.12). The identities thus obtained 
generalize the following identity due to Chaba and Pathria(14): 

~ '  l 1 e x p ( -  2~yl)  1 C3 y2 q-2 r ry - - -  ~ l-2(l 2+y2)  1 
I~Z3  7r, y 2 ~ 7T, r e 7 3  

w h e r e  C 3 is a universal constant. The representation given by the right- 
hand side of the above equation is especially convenient for small values 
of y. 
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This step makes use of the Poisson summation formula in order to 
separate the bulk contribution from the finite-size one. The approximations 
of large L are localized in the derivation of the asymptotic equalities (2.7) 
and (2.8). As a result of these approximations the whole dependence on the 
finite size L of the system enters through the characteristic combination 
y = ~1/"L/2~ [see gq. (2.11)-1. 

C. The application of the Jacobi identity 

A(u) = A (2.!5) 

where 

A(u)= ~ e .~2 (2.16) 
l - -  oo 

to the sum in the right-hand side of Eq. (2.12) yields the result 

Fd, d,~(y) = D~q!~(2rcy) d'-~ -- (2•y) -~ 

+ (-~)~ J0~za'/2 ~ du u (~ tEr - f u  ~ 

where (for 0 < d' < a) 

D~aq!~=2rc[(4rc)a '12F(~)asind@~l l 

(2.17) 

(2.!8) 

For d = 4 ,  d ' = 0 ,  and or=2, when El, l ( z )=exp(z ) ,  Eq. (2.17) reduces to 
the function Fl (y  ) introduced earlier by a number of authors in finite-size 
scaling theory. (315 17) 

In step C we make use of the Poisson identity (2.15) in order to trans- 
form the representation (2.12) of the finite-size contribution into another 
form, Eq. (2.17), which is more convenient for small y. 

We note that an alternative approach, avoiding the use of the Jacobi 
identity, has been suggested in ref. 8. 

D. The identical transformations in this step separate explicitly the 
first few leading-order terms in y --, 0 + at different ratios of d and or. For 
the reader's convenience all the calculations are given in the Appendix. 
Here we present the final expressions only. 
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In the case when O < d ' < a ,  a I < d < a ( I +  1), 

Fd,,Z,,~(Y) = - -  (2roy)  " + D~~ a ' -  ~ - D~~ a ~ 

1 
-t- 2 ( - 1 ) k + l  Ca, d',okE(27r)~'F(ak/2)] 1(2~Y) ~(k 1) 

k = l  

+rtd'/2(2rc)-~ ~ '  - ,+d '  (i) 2 2 n G/2,d'/2(Y /n ) (2.19) 
n ff Z d* 

where 

Cd, a',~k=Za'/2 du u (~k a')/2 1 Ad*(u)-- 1 (2.20) 

converges for d' < ak < d, and 

{ 'L   lt Fr I, +lllj f . ll v~ l , ) ( t )=  [" d x x  ~ f l - l e - x  E ~ , ~ E - ( x t ) ~ ] -  
00 k = 0  

Note that the last term in the right-hand side of Eq. (2.19) is (p(y,l). In the 
important special case of fully finite geometry, d' =0 ,  d * =  d, by using 
Eqs. (2.1) and (2.21) (with f l = 0 )  and taking the limit d ' - + 0  in D (~ d ' , r  w e  

obtain 
1 

Fd, o,~(y)= ~ ( _ _ 1 ) k + 1  Cd, o, okE(2x)~k F(ak/2)] x(27ry)~(k 1) 
k = l  

_ p(ao,)(Zrcy)d-,, + ( _  1)z yoZ(Zrc ) - ,~ y , '  l -o I ( l ,~  + y ~ ) - i  
lc Z d 

( 2 .22 )  

From a physical point of view the given parameters of the problem are 
the space dimensionality d and the interaction exponent a. If the ratio d/a 
is nonintegral, then the identity (2.19) is to be used with I =  Ed/a], where 
the symbol Ix]  denotes the entire part of x. If d =  Ia, where I>~ 2 is an 
integer, then expression (2.19) for Fd, d,~(Y) has to be modified in the 
following way: 

F~z,d,,a(y ) = - -  (27ry)-~ + D(d~ d' ~ +/5~/)d, ~(2xy)~ 

I - -1  

+ ~ ( - 1 )  k+l Cd.d,.~kE(2x)~kF(ak/2)] ~(27ry) ~(k-1) 
k = l  

- 2 ( -  1)'E~(4=) ~'~ r (~ I /2 ) ]  1 (2~y)~. ,)ln(2~yV 

+rca'/z(2rc ) o ~ '  -+ n a'v(J/)2,a,/2(y2/n2) (2.23) 
need*  
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where the new cons tan t / )  (~ is given by d , d ' , a  

Ia,  d ' , a  - -  IA '~(l 17/2 E G / 2 ,  c r / 2 ( _ _ U G / 2 )  
~0 lg 

i 2 (_l)~u~k/2 ] 

-+ F(aI/2) [A'e-d ' (u)  -- 1 ] (2.24) 

Of definite interest for the finite-size scaling theory is the case d =  a, which 
corresponds to the lower critical dimension. In this case 

F,,,d,~(y ) = -- (2zcy) ~ + D~~ d'-'* a_ ~ t )  , ! ~ o , d ' , ~  

+ 2[a(4=) "/2 r(a/2)] -1 ln(2=y)~ 

+~d' /2 (2~z) -~  y '  - ~ + ~ '  f~ 2 2 n V~/2, d,/2(y /n ) (2.25) 
r i c e d *  

where 

~(1 ,  _(4g)-~/2 f ?  dU {E,~/2,~/2,_ u _ _  a/2 

F(a/2) [A ~ d ' ( u ) -  13 (2.26) 

Note that by using identical transformations in the last two steps we 
have obtained representations for the function F4j,~(y ) generalizing the 
results of ref. 1. Our results hold for all d/a ~ [1, oo), 0 < a ~< 2, 0 ~< d' < ~r: 
Eq.(2.19) holds for I < d / a < I + l  (I=1,2, . . . ) ,  Eq. (2.23) for d/a=I>~2, 
and Eq. (2.25) for d/a = I. 

The representations of the function Fa.d,,o(y) obtained in this section 
form the basis of our further investigation of finite-size effects. 

3. C R I T I C A L  F IN ITE-S IZE S C A L I N G  

According to the finite-size hypothesis, {11'12) in a close neighborhood 
of the critical temperature T,, of the infinite system, the rounding and shift- 
ing of the singularities in the thermodynamic functions is controlled by the 
scaled variable x = L / { ~ ,  where ~.< is the bulk correlation length. These 
arguments have to be modified, however, in the case of C(n) models with 
n ~> 2 below To, when, in the absence of symmetry-breaking fields, {~ = 
for all T <  T,.. (l'*a) That is why we first consider the case T >  To. 
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The representations of the function Fd,#,c~(y ) obtained in Section 2 
[see Eqs. (2.19), (2.23), and (2.25)] allow for a direct testing of the finite- 
size scaling hypothesis m'12~ for different relative values of d, d', and a. 
Denote by ~L the solution of the finite-size equation for the spherical field 
which follows from Eqs. (1.5), (2.10), and (2.13), 

p ~ J ( o ) { 1  - [H/p~J(O)~]:} 
=Wa,~(~)+L d~ I + L  d+~Fd, a,~(~i/~L/2rc) (3.1) 

and let ~ be the solution of the corresponding bulk equation which 
follows from (3.1) in the limit L ~  oo. Define then effective correlation 
lengths ~L ~z  ~/~ and ~ ~ - 3-1/~ for the finite and infinite systems, respec- -~- - - T C C  

tively. Note that these definitions differ from the moment-based definitions 
of Brezin (2) and Shapiro and Rudnick. (6) The reason is that in the case of 
long-range interactions the latter definitions fail in the bulk limit since the 
second moment of the pair correlation function diverges when L ~ oo. We 
use the definition of an effective correlation length which can be motivated 
by the asymptotic form of the large-distance finite-size pair correlation 
function. ~9) In the case of a fully finite system and short-range interactions 
there is a simple correspondence between the different definitions of ~r; see 
Eq. (3.7) below. 

In terms of the correlation lengths, Eq. (3.1) may be rewritten in the 
form (H = 0) 

Wd,.(~L~) - Wd,~(~[~)=L d+~{(~L/L)~+Fd, d,~(L/27Z~L) } (3.2) 

If the finite-size hypothesis holds from (3.2), it would follow that (2) 

~L/L = X(r (3.3) 

with a universal scaling function X(-). 
Let us consider now the different cases which correspond to different 

relative magnitudes of d and a, assuming that d' < a. 

(i) d =  6. This case corresponds to the lower critical dimension of 
the model. The bulk thermodynamic functions exhibit essential singularities 
at the critical point T~=0. The Watson-type integral (1.7) now has the 
small-~ asymptotic form (2~ 

Wo,~(~) --- -2 [a (4~)  ~/2 F(a/2)] ~ln ~ (3.4) 

and Eq. (3.2) takes the finite-size scaling form 

- 2 [ ( 4 ~ )  ~/2 r(a/2)] ~ l n ( ~ L / ~ )  = (~L/L) ~ + F~,d,~,(L/Z~L ) (3.5) 
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Equation (3.5) is equivalent to Eq. (3.3) with a scaling function depending 
on a and d'. When L/~.L'~ 1, by using the leading-order behavior of 
F~,d,~(y ) [see (2.25)], we obtain the solution of Eq. (3.5) in an explicit 
form: 

~_L/L = (2[(47C) ~/2 F(a/2) Dt,~ ~ -~ l n ( ~ / L ) }  ~/(~ -d'~ (3.6) 

TO compare with the results of Shapiro and Rudnick (6) for the case of fully 
finite geometry ( d ' =  0) and nearest neighbor interaction (a = 2), we have 
to take into account the relationship between their correlation length CL~SR 
and the one accepted here, ~L, namely 

sR 2 ( 3 . 7 )  ({L /L) = const. [1 + (1/2"a)({L/L) -2] -~ 

By substituting (3.6) into (3.7), we obtain 

( ~ S R / / -  12 ~ c / ~  -~ const �9 [1 - 1/ln(~o~/L)] (3.8) 

in full agreement with ref. 6. 

(ii) a < d < 2 ~ .  In this case, when T---,T~ ? one obtains the 
asymptotic expansion ~2~ 

Wd ~(~) --- W ~ ( 0 ) -  r~II~ ~td-~t/~ (3.9) 
, , ~ d , o -  

Now Eq. (3.1) becomes ( H =  0) 

D(I) [(LI~L)J o_  ( L / ~ ) d - ~ ]  = (~L/L)~ + Fd a' ~(L/2ns (3.i0) 
d ,  a , , , - 

(a) 
diverge, 

thus verifying the validity of the finite-size scaling form (3.3) with a scaling 
function X(.o) depending on d, d', and a. 

Note that the coefficient r~(1) in the left-hand side of Eq. (3.10) ~ d , a  

becomes singular when d - ~ a  + or d ~ 2 a - ,  as is seen from Eq. (A.4). In 
these cases, however, one should return to the initial equations (3.1) or 
(3.2), respectively, and take into account the following. 

When d--*~ +, both constants Wd.~(0 ) and n~l~ in Eq.(3.9) ~ d , a  

Wd,.(0) = 2[(4=) ~/2 F(a/2) e] ~ + (9(1) 

DS!~ = 2[(4=) ~/2 F(a/2) e] -~ + (9(1) 
(3.11) 

but tile divergent terms cancel out and the result is 

Wo+~.~(~) = -2 [ (4~)  ~ F(a/2)] -1 [ln ~1/~ + (9(1)] + (9(e In 3) (3.12) 
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The right-hand side of Eq. (3.10) is continuous in the limit d ~  a + and the 
function Fd, a,~(y ) takes the form (2.25) in that limit. Thus, we obtain 
Eq. (3.5) as the correct d ~  a + limit of the equation for the spherical field 
(3.1) at H = 0 .  

(b) When d ~ 2 a - ,  the bulk term again has to be reevaluated start- 
ing from the qualitatively correct approximation (2~1 

Wa,,(~) ~- Wa,,(O)- 2~ (e- ")/~[(4~) a/2 F(d/2)]-1 

qo~- 1/a 

•  d x x  a-~ ~(1 +x~) 1 (3.13) 
~0  

where qo is the radius of the effective spherical Brillouin zone. The result is 

W2 . . . . .  (~) = W2o, o(0) + 2[0-(&z)~ F(0-)] -~ ~ in ~ + (9(~ in ~) (3.14) 

and we are led to the consideration of the next case. 

(iii) d=2~ .  After passing to the limit d ~ 2 o - -  in the right-hand 
side of Eq. (3.2), which leads to the representation (2.23) with I =  2 for the 
function Fa.d,,~(Y), and taking into account (3.14), we obtain the equation 

2[(4~) ~ F(0-)]-~ [(L/~ ~) ~ ln(L/~ ~ ) -  (L/~L) ~ ln(L/~L) ] 

-- 2 In L[(4~z) ~ F(0-)] -~ [-(L/~ ~) ~ - (L/~L) ~ 

= (~L/L) ~ + F2~,d,~(L/Z~z~L) (3.15) 

The presence of the second term, proportional to In L, in the left-hand 
side of Eq. (3.15) violates the finite-size scaling relationship (3.3). Instead, 
following the idea of Luck, (5) one may derive a modified finite-size scaling 
relationship. To this end, we introduce the new variables 

x = (L/~ oo)(ln L)~/~2~- a'~ 
(3.16) 

z = (~L/L)(ln L) -1/(2~ a') 

and, ignoring terms of (9(ln in L/ln L), rewrite Eq. (3.15) in the form 

�89 F(a) D <~ z 2 ~  (3.17) d ' , ~  / 

At T #  Tc and large enough L the second term in the brackets may be 
ignored, too, and then the relationship between the variables x and z 
resembles the finite-size scaling equation (3.3). At T= T~ from (3.17) we 
obtain 

~L= [�89 F(a) D~O!~,]-l/(2o-d') L(ln L)l/(2,~ d') (3.18) 
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In the particular case d ' =  1, a = 2, Eq. (3,17) was obtained in ref. 5. 

(iv) d>2~ .  In this case, when T ~  T~, <2~ 

W~,~(~) ~- Wa,~(O) - I W~,~(0)I ~ (3.19) 

and Eq. (3.2) takes the form 

[ W~,~(0)I (~.[~ - -  ~ oo ~) = L -a+  ~'(~L/L) '~ + L -a+  ~Fd, a,,o(L/ZT.C~L) (3.20) 

At L/~L  ~ 1 from the representation (2.23) with 1> 2 we obtain 

r~(o) tr/:~ ~ ,~+a'_(L/~.I=)-~ (3.21) Fo+,a, ~(L/2rc~L ) ~_ ~u, o,~/~L, 

Introducing the variables 

~_L/L = z L  ~a- 2~1/~2'~ d') 
(3.22) 

LIfo+ = x L  (a- 2r d') 

and taking into account (3.21), we rewrite Eq. (3.20) in the form 

D(jqlo [ W~,~(0)J ~ z 2 ~  ( x z )  ~ -  1 = 0  (3.23) 

which is similar to the case d =  2a. Such a modified finite-size scaling has 
been suggested in ref. 5. At T =  T,. from Eqs. (3.22) and (3.23) we obtain 

~L = [11~a/'' a,~+0~l/n(~ a')/(2o d') (3.24) 

In the particular case ~r = 2 the relationship (3.24) reduces to the results 
obtained by Singh and Pathria. <22> 

4. F INITE-SIZE SCALING AT F I R S T - O R D E R  
PHASE T R A N S I T I O N S  

As already mentioned, the representations obtained in Section 2 for 
the function Fa, a,,~(y ) are especially advantageous when y ~ 0  +, which is 
the case of T <  Tc, d ' < a ,  and L ~  oo. Let a I < d < a ( I +  1). With the use 
of (2.19), taking into account that in the presence of an external magnetic 
field H the magnetization per spin in the finite system is 

=  +/oo J(o) 

we may write the equation of state [of. Eq. (1.5)] 

= r a M ( o ) {  1 - E H / p o ) ( o )  

(4.1) 

(4.2) 

822/59/5-6-23 
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in the form 

2dr [ w a , ~ ( a ) -  wa, o(o)] 2 ~ L d _  ~ , \2Jd mJ 

D(dI, ) Ld- * ~ oa f d,d'.o \2:~ff rnJJ 

= m Z ( T )  - m 2 (4.3) 

Here 

~ = �89 h = fiH (4.4) 

and we have introduced the "spin-wave" scaling function (1~ 

Yd, d,~(Z)--~ (--1)kCd, d,~k (27~) F T z(k-~) 
k = l  

(z2Jo 
1 d'/2 --~ ~ '  --o+d'~,,(I) ( 4 , 5 )  

- ~ =  (2=) .~z~*n va/2, d,/2 \4g2rt2 J 

which generalizes expression (3.25) of ref. 1 to the case of real values of d', 
0 < d ' <  a. Note that we substitute in Eq. (4.3) the expansion (1) 

I - - 1  

Wa, o(~)= Wa,~(O)+ Z (--1)kbk~ k+D(I) ~(d ~)/o (4.6) d, o" 
k = l  

and finally obtain 

L " *  
2 *  \ 2 *  m/  

1 I51 k 1 y(,) (4.7) 
+ - ~  =lbk X L  d-~ d,d',~ ~-~ 

where /~k = ( - - 2 Y )  -k bk. 
At d' = 0, Eq. (4.7) reduces Io the asymptotic equation of state (3.26) 

of ref. 1. 
Note that in the case of an infinite cylinder (d' = 1), Eq. (4.7) corrects 

Eq. (4.20) of re[ 1 with respect to the term 

(~L a) -1 = 2Ym/Ldh (4.8) 

The term (4.8) is the q = 0 contribution of the sum (1.6) in the case of fully 
finite geometry, but it should not appear in the case when the system is 
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infinite in d ' >  0 dimensions, as follows from our representations (2.13) and 
(2.17). 

Taking the limit h ~ 0 in Eq. (4.7), we easily obtain for the zero-field 
susceptibility below Tc the leading-order result 

r,.~2~T~ rd*/n(o) l~,'(~-a') (4.9) X0 = fi lira (m/h) = fi(2YC) d'/(~-a') L,,o0,~J ~ ,~d',~J 
h ~ 0  

which at d'  = 1 reduces to Eq. (4.21) of ref. 1. 
Finally, we note that in the Ld*x oo d' geometry the scaled field 

variable YA due to Fisher and Privman (1) should be generalized to take the 
form (see also ref. 19) 

YA = hmo(T) Ld'~d' ~ , O) 

= mo(T)  hLd*r176162 (4.10) 

In terms of YA the leading-order finite-size scaling equation for the 
magnetization below T C becomes (19) 

m L ( r ,  H)  = mo(T) Y ~ ( Y A )  (4.11) 

where the scaling function Y~ obeys the universal equation 

Y ~ / ( 1 -  y 2  )o/(~-d')_ ,, /n(o) (4.12) 
- -  .), A / ~  d , , a  

At d' = 1 this equation reduces to Eq. (4.27) of ref. 1. 

5. D I S C U S S I O N  

Here we have suggested a general method for the derivation of finite- 
size effects in systems with long-range power-law interactions, which also 
includes as a particular case short-range interactions. To illustrate the 
method, we have given the asymptotic analysis in the framework of the 
mean spherical model, but it is clear that there is no difficulty in principle 
in extending the ideas to the case of more complicated (_9(n) lattice or field 
models. 

We have studied systems of general L d - - d ' •  O0 d' geometry and 
arbitrary interaction decay exponent a > 0, paying special attention to the 
complications arising at the borderline dimensionalities. The results 
obtained here shed light on the question of whether the e-expansion about 
these dimensionalities is applicable or not. The problem has been discussed 
with the example of the exactly solvable spherical model by a number of 
authors. (2'4-6) In this case, due to the fact that the exact form of the equa- 
tion for the correlation length ~L is known at arbitrary temperatures T, one 
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can see that critical finite-size scaling holds only in the close neighborhood 
of the critical temperature Tc. The solution of the approximate finite-size 
scaling equation (3.10) exhibits near the upper critical dimension a charac- 
teristic singularity in e ~ 0 +: 

~L( Tc, O)/L = [�89 ~ F(a) D~~ -1/(2o-d,) 

which has been the subject of discussion. (2'4 6) Our proposition is that this 
singularity is an artifact of the approximation--the price one has to pay for 
obtaining a universal finite-size scaling equation. If we retain in the equa- 
tion the terms which are asymptotically negligible at a fixed dimensionality 
between the borderline ones, but become singular in e when the dimen- 
sionality approaches the upper or lower critical one, then no e-singularity 
appears in the solution, but rather the equation itself is modified, losing its 
universal form, and so does the solution. For example, at the upper critical 
dimensionality the e i singularity in the correlation length is replaced by 
In L [see Eq. (3.18)]. 

The above considerations do not contradict, of course, the general 
idea connecting the breakdown of standard finite-size scaling with the 
failure of hyperscaling above the upper critical dimension. Comments on 
this situation with reference to the e-expansion are given in ref. 6, but the 
introduction there of the so-called soft spherical constraint, which brings 
into the theory the dangerous irrelevant variable, shifts the problem out of 
the framework of the mean spherical model. 

The equation for the correlation length (3.2), together with the 
representations of the function F~,d,,~,(y) obtained for different relative 
magnitudes of d and a, exhibit in a very transparent way the mathematical 
mechanism of the appearance of different finite-size scaling forms, at least 
in the case of the spherical model. 

The representations given by Eqs. (2.19), (2.23), and (2.25) lead to the 
Fisher-Privman form ~1) of the equation of state for all d~> a and 0 ~< d' < a. 
They also provide the natural small-y expansion of the function Fd, d,~(y), 
which is especially important below T c. This has been demonstrated by the 
expression (4.9) for the susceptibility of the mean spherical model in the 
region of first-order phase transition. 

The representations of the function F~,d,,~(y) obtained here are useful 
in the study of more complicated models, too. This function enters the 
expressions for the shift of the critical temperature and the renormalization 
of the interaction constant in the study of the finite-size effects in the 
q04-theory. (3) The same function enters the expressions for the renormalized 
parameters in the dynamical finite-size scaling theory. (is 17) 

We note also that the suggested method can be combined with the 
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Ewald summation technique used in finite-size scaling by Shapiro and 
Rudnick. (6/ As a result, computationally superior expressions will be 
obtained for systems with long-range interactions. 

APPEN DIX 

In order to transform Eq. (2.17) into the required form, we subtract 
from the function E~/2,~/2(-u~ ~ the first I - 1  terms (the integer I will 
be defined below) of its expansion (2.2) and then add them in an 
appropriate way, thus obtaining identically 

Fj, d,,o(y)=~Za'/2(2~Z) -~ duu (~ ~'l/2-1[Aa*(u)_l] 

' - -1 ( _ _ l ) k  yaku~rk/2 ~ 

k=O 

E - z d / ~ ( 2 ~ ) - ~  du u ( ~  

F 1- 1 )k yakdrk/2 ] 

rEG(k +i~?]-J 

+ F [ a ( k + l ) / 2 ]  (27r) ~ duuE~(k+t)-~'?/2-~ k=O 

+ D(d~ d ' ~  -- (2~ry)-~ (A.1) 

By using the explicit form of A(u) [see Eq. (2.16)] and introducing the 
function (a v~,r [see (2.21)], we can write the first term in the right-hand 
side of Eq. (A.1) as 

(y2) rca'/2 ~ '  ~ (A.2) 

We evaluate the second integral in the right-hand side of Eq. (A.1) exactly 
with the aid of the identity 

u a/z= iF(d/2)]-1 dttJ/2-1e u, (A.3) 
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which leads to a term proportional to 

I( (d)J l f/J~ f)  ~a,,~D(/) = 4g) a/2 f dt t a/2 - 1 d u  IA ~r/2- ~ e -~' 

x E./2,./=( - u  "/2) - k=o F [ a ( k  + 1)/2]J 

= [ ( 4 n ) a / 2 F ( d ) ] - l f o d t t a / 2 - 1  

[r ] x 1+t~ /2) -1_  ~ ( _ l ) k t  ,(k+1)/2 
k=0 

= 2 n ( - 1 ) l I ( g r c ) a / 2 F ( d  ) ~ sin ( d -  aI) n ]  -1 = n ( ~  ~d, ,  (A.4) 

In deriving the second of the equalities (A.4), we have used the property 
(2.2) of the Mittag-Leffler function, and in deriving the third one, use has 
been made of the elementary identity 

N--I 
( l + x )  1 2 ( - - 1 ) k X k = ( - - 1 ) N x N ( I + x )  -1 (A.5) 

k=0 
with an obvious substitution for x. Thus, we obtain for this term 

(2ny)a-~176 d r  /= in teger  (A.6) 

We write the third term in the right-hand side of Eq. (A.1 in the form 

1 Cd d' .k 
( - 1 )  k+x ' ' (A.7) 

k =1 (2n) ~k r (ak /2 )  

where Ca, a,,~ is given by expression (2.20). 
By using Eqs. (A.2), (A.4), and (A.17), we can cast the representation 

(A.1) of Fa, a,,,(Y) into the form (2.19), which is valid for O<~d'<a,  
o I < d < ~ ( I +  1). 

In the case d = a I ,  1 ) 2 ,  the expression for Fd, a,,,(y ) has to be 
modified in the following way. 

Upon adding up the third term in the right-hand side of Eq. (2.19) 
with the k = 1 term of the finite sum over k = 1 ..... I and the right-hand side 
of the identity ~8) 

G J,(c~176 all [E./2 1(--U"/2) a cs/2 ln(2ny)"=-~ o u ' - E ~ / 2 , 1 ( - Y  u )] (A.8) 
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multiplied beforehand by the coefficient 

2( - 1) ~ Eo-(4~) ~/2 r(aI/2)] -~ (2ny) ~u-- 1) 

we obtain an expression in which we may set d =  aI: 

(A.9) 

1) (4re) ol/2 f ~ du ~u ~'(' 1)/2 i ~- ~ ~ 2~ y ~ ~1~ 
0 U ( L E~/2, '~/2(-uG/2) 

- ~ F [ a ( k +  1 ) / 2 ] J ~ ' ~  [A ~' d'(u)- 1] 
k = 0  

= (2rty)~4z-i)/3~/)a,, ~ (A.10) 

5(n  is finite for all a > 0 and d' < a, in con- The newly formed constant "-'~t.a,.r 
trast with ~,(n , which is singular at d--+ aI. Subtracting next the left-hand LI  d, d ' , a  

side of the identity (A.8) multiplied by the coefficient (A.9) and combining 
with the previous results, we finally obtain Eq. (2.23) for all d/a = I>~ 2. 

Our motivation for adding and subtracting the identity (A.8) is the 
following. As is know, the Watson-type integral (1.7) at the borderline 
dimensionality d =  aI  has a leading singularity of the form (see, e.g., 
refs. 1 and 13) d.(d, a)~(z l)ln ~. On the other hand, when y ~ 0  the 
function Fed, ~(y) must contain the same singularity as the bulk term but 
with the opposite sign, in order to cancel it out and to ensure thus the 
analyticity of W (L) ~,,~ (in the case of finite L and d' < a there is no phase d , d ' , a ~ , Y )  

transition). 
In the case d/a = 1, which corresponds to the lower critical dimension, 

the finite sum in the right-hand side of Eq. (2.23) consists of just one term 
(with k = 1) and by using again the identity (A.8) with the coefficient (A.9) 
at I =  1, we obtain 

lim 
d ~ a  + 

- f o  u 

F(G/2) [ A ~ - d ' ( u ) -  1] (A. 1 l) 

The integral in the right-hand side of Eq. (A.11) is well defined and we may 
set it to a new constant/~1) . a.d',~, see Eq. (2.26). 
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